We have used a new light footprinting technique to study the interaction of histone H1(0) and a deletion mutant delta CH1(0) (lacking H1(0) COOH-terminal domain) with a synthetic four-way junction DNA. This technique is based on a single 5-ns UV laser pulse and has the ability to map protein-DNA interactions within unperturbed complexes at time scales far faster than molecular rearrangements. We found both H1(0) and delta CH1(0) to affect the photoreactivity of specific guanine residues located on the central part of four-way junction DNA. These observations demonstrate specific recognition of H1(0) for the central domain of four-way junction DNA. In addition, histone H1(0) decreases the photoreactivity of selected guanines located some distance from the crossover, indicating specific involvement of the H1(0) COOH-terminal tail with this region. Immunofractionation of delta CH1(0)-four-way DNA junction complexes with monoclonal anti-H1 antibody combined with the UV laser footprinting method demonstrated the existence of two types of delta CH1(0)-four-way DNA junction complexes.