Background: Septins are members of a conserved family of GTPases found in organisms as diverse as budding yeast and mammals. In budding yeast, septins form hetero-oligomeric filaments that lie adjacent to the membrane at the mother-bud neck, whereas in mammals, they concentrate at the cleavage furrow of mitotic cells; in both cases, septins provide a required function for cytokinesis. What directs the location and determines the stability of septin filaments, however, remains unknown.
Results: Here we show that the mammalian septin H5 is associated with the plasma membrane and specifically binds the phospholipids phosphatidylinositol 4, 5-bisphosphate (PtdIns(4,5)P(2)) and phosphatidylinositol 3,4, 5-trisphosphate (PtdIns(3,4,5)P(3)). Deletion analysis revealed that this binding occurs at a site rich in basic residues that is conserved in most septins and is located adjacent to the GTP-binding motif. Phosphoinositide binding was inhibited by mutations within this motif and was also blocked by agents known to associate with PtdInsP(2) or by a peptide corresponding to the predicted PtdInsP(2)-binding sequence of H5. GTP binding and hydrolysis by H5 significantly reduced its PtdInsP(2)-binding capability. Treatment of cells with agents that occluded, dephosphorylated or degraded PtdInsP(2) altered the appearance and localization of H5.
Conclusions: These results indicate that the interaction of septins with PtdInsP(2) might be an important cellular mechanism for the spatial and temporal control of septin accumulation.