Chronic inflammatory diseases of the lungs, such as asthma, are frequently associated with mixed (Th2 and Th1) T cell responses. We examined the impact of critical Th1 and Th2 cytokines, IFN-gamma and IL-13, on the responses in the lungs. In a mouse model of airway inflammation induced by mixed T cell responses, the number of Th1 (IFN-gamma-positive) cells was found to be negatively correlated with airway hyperreactivity. In these mice, blockade of IL-13 partially inhibited airway hyperreactivity and goblet cell hyperplasia but not inflammation. In contrast, in mice that responded with a polarized Th2 response to the same Ag, blockade of IL-13 inhibited airway hyperreactivity, goblet cell hyperplasia, and airway inflammation. These results indicated that the presence of IFN-gamma would modulate the effects of IL-13 in the lungs. To test this hypothesis, wild-type mice were given recombinant cytokines intranasally. IFN-gamma inhibited IL-13-induced goblet cell hyperplasia and airway eosinophilia. At the same time, IFN-gamma and IL-13 potentiated each other's effects. In the airways of mice given IL-13 and IFN-gamma, levels of IL-6 were increased as well as numbers of NK cells and of CD11c-positive cells expressing MHC class II and high levels of CD86. In conclusion, IFN-gamma has double-sided effects (inhibiting some, potentiating others) on IL-13-induced changes in the lungs. This may be the reason for the ambiguous role of Th1 responses on Th2 response-induced lung injury.