A conservative estimate of the species tree for the woodpecker genus Picoides based on two mitochondrial protein-coding genes is tested using sequences of an independently evolving nuclear intron, beta-fibrinogen intron 7. The mitochondrial gene-based topology and the intron-based topology are concordant, and a partition-homogeneity statistical test did not detect phylogenetic heterogeneity. The intron evolves more slowly than the mitochondrial sequences and tends not to resolve relationships among recently evolved species. However, the intron is superior over mitochondrial genes in resolving older bifurcations in the phylogeny. The two data sets were combined resulting in a robust estimate of the Picoides species tree in which most every node is statistically supported by bootstrap proportions. The Picoides species tree clearly shows that many morphological and behavioral characters used to lump species into this single genus have evolved by convergent evolution. Picoides is considered the largest genus of woodpeckers, but the molecular-based species tree suggests that Picoides is actually a conglomerate of several smaller groups.
©2002 Elsevier Science (USA).