The NIMA kinases are one of several families of kinases that participate in driving the eukaryotic cell cycle. NIMA-related kinases have been implicated in G2/M progression, chromatin condensation and regulation of the centrosome cycle. Here we report the identification of a new member of this family, FA2, from Chlamydomonas reinhardtii. FA2 was originally discovered in a genetic screen for deflagellation-defective mutants. We have previously shown that FA2 is essential for basal-body/centriole-associated microtubule severing. We now report that the FA2 NIMA-related kinase also plays a role in cell cycle progression in Chlamydomonas. This is the first indication that members of the NIMA family might exert their effects through the regulation of microtubule severing.