To test whether hepatocytes engineered in vivo can serve as surrogate beta cells by similarly secreting mature insulin in a glucose-sensitive manner, we prepared adenoviral vectors encoding wild-type proinsulin (hIns-wt), a modified proinsulin cleavable by the ubiquitously expressed protease furin (hIns-M3), or each of the two beta cell specific pro-insulin convertases PC2 and PC3. Following a detailed in vitro characterization of the proteins produced by our vectors, we infected the liver and, for comparison, the muscle of a chemically induced murine model of type I diabetes. Insulin expression from the transduced tissues was extensively characterized and showed to be constitutive rather than regulated. To obtain regulated expression, we placed expression of hIns-M3 under the control of the dimerizer-inducible transcription system. Hormone secretion from mouse liver was negligible in the absence of the dimerizer drug rapamycin, was inducible in a dose-dependent manner upon its administration, and reversible following drug withdrawal. These data confirm liver as a promising target for in vivo expression of processed insulin. While suggesting that hepatocytes cannot provide authentic glucose-responsive regulation, these results demonstrate that pharmacological regulation is a promising alternative route to the controlled delivery of insulin following hepatic gene transfer.