Matrix Gla protein (MGP) is a 14-kDa protein found in bone and cartilage which contains the unusual amino acid gamma-carboxyglutamic acid (Gla). The biological function of this protein has not been elucidated. Here we have demonstrated the adherence of chondrocytes, fibroblasts, osteosarcoma cells, and kidney mesangial cells to MGP purified from bovine bone. Maximum adherence occurred at MGP concentrations of 0.5-1.0 micrograms/ml. Removal of the calcium-binding Gla residues by thermal decarboxylation of MGP destroyed the proteins' cell adherence properties. Cell adherence to MGP was not affected by the presence of antibodies directed against the C-terminal (non-Gla) portion of the protein or the presence of cycloheximide during the adherence assay. However, the Arg-Gly-Asp-containing synthetic peptide Gly-Arg-Gly-Asp-Ser-Pro significantly inhibited cell attachment to MGP, whereas the control peptide Gly-Arg-Gly-Glu-Ser-Pro had minimal effect. These data indicate that MGP may function in mediating cell attachment to the extracellular matrix via a receptor that requires intact Gla residues and that can be inhibited by Arg-Gly-Asp-containing peptides.