A recurrent neural network, modified to handle highly incomplete training data is described. Unsupervised pattern recognition is demonstrated in the WHO database of adverse drug reactions. Comparison is made to a well established method, AutoClass, and the performances of both methods is investigated on simulated data. The neural network method performs comparably to AutoClass in simulated data, and better than AutoClass in real world data. With its better scaling properties, the neural network is a promising tool for unsupervised pattern recognition in huge databases of incomplete observations.