Protein tyrosine phosphorylation is a ubiquitous signalling mechanism and is regulated by a balance between the action of kinases and phosphatases. The SH2 domain-containing phosphatases SHP-1 and SHP-2 are the best studied of the classical non-receptor tyrosine phosphatases, but it is intriguing that despite their close sequence and structural homology these two phosphatases play quite different cellular roles. In particular, whereas SHP-1 plays a largely negative signalling role suppressing cellular activation, SHP-2 plays a largely positive signalling role. Major sequence differences between the two molecules are apparent in the approximately 100 amino acid residues at the extreme C-terminus of the proteins, beyond the phosphatase catalytic domain. Here we review how the differences in the tails of these proteins may regulate their activities and explain some of their functional differences.