The problem of embedding sensor fault tolerance in feedback control of neuromuscular blockade is considered. For tackling interruptions of feedback measurements, a structure based upon Bayesian inference as well as a predictive filter is proposed. This algorithm is general and can be applied to different situations. Here, it is incorporated in an adaptive automatic system for feedback control of neuromuscular blockade using continuous infusion of muscle relaxants. A significant contribution consists in the experimental clinical testing of the algorithm in patients undergoing surgery.