Repeated exposure to drugs of abuse causes time-dependent neuroadaptive changes in the mesocorticolimbic system of the brain that are considered to underlie the expression of major behavioral characteristics of drug addiction. We used a 2-D gel-based proteomics approach to examine morphine-induced temporal changes in protein expression and/or PTM in the nucleus accumbens (NAc) of morphine-sensitized rats. Rats were pretreated with saline [1 mL/kg subcutaneously (s.c.)] or morphine (10 mg/kg, s.c.) once daily for 14 days and the animals were decapitated 1 day later. The NAc was extracted and proteins resolved by 2-DE. Several protein functional groups were found to be regulated in the morphine-treated group, representing cytoskeletal proteins, proteins involved in neurotransmission, enzymes involved in energy metabolism and protein degradation, and a protein that regulates translation.