Sodium butyrate-treated embryonic stem cells yield hepatocyte-like cells expressing a glycolytic phenotype

Biotechnol Bioeng. 2006 Aug 20;94(6):1053-63. doi: 10.1002/bit.20936.

Abstract

Embryonic stem cells serve as a promising technology to obtain specific cell types for a number of biomedical applications. Because traditional techniques, such as embryoid body formation result in a wide array of differentiated cells such as hepatic, neuronal, and cardiac lineages, strategies have been utilized which favor cell-specific differentiation to generate more uniformity. In the present study, we have investigated the use of sodium butyrate in a monolayer culture configuration to mediate hepatocyte differentiation of murine embryonic stem cells. Several functional assays used to characterize hepatocyte function (viz. urea secretion, intracellular albumin content, cytokeratin 18, and glycogen staining) were used to analyze the differentiating cell population, suggesting the presence of an enriched population of hepatocyte-like cells. Since mature hepatocytes mediate energy metabolism predominantly through oxidative means as opposed to hepatocyte precursors, which are primarily glycolytic, we have performed a kinetic analysis of glycolytic and functional capacity to characterize the differentiated cells. In conjunction with mitochondrial mass and activity measurements, we show that Na-butyrate-mediated differentiated cells mediate energy metabolism predominantly through glycolysis. This metabolic and mitochondrial characterization can assist in evaluating stem cell differentiation and may prove useful in identifying key regulatory molecules in mediating further differentiation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Butyrates / pharmacology*
  • Cell Culture Techniques / methods*
  • Cell Differentiation / drug effects
  • Cell Line
  • Cell Survival / drug effects
  • Glucose / metabolism*
  • Glycogen / metabolism*
  • Glycolysis / drug effects
  • Glycolysis / physiology*
  • Hepatocytes / cytology*
  • Hepatocytes / drug effects
  • Hepatocytes / metabolism*
  • Metabolic Clearance Rate
  • Mice
  • Mitochondria / drug effects
  • Mitochondria / metabolism
  • Stem Cells / cytology*
  • Stem Cells / drug effects
  • Stem Cells / metabolism*
  • Tissue Engineering / methods*

Substances

  • Butyrates
  • Glycogen
  • Glucose