Background: In patients treated with rituximab and alemtuzumab for lymphomas or CLL, antibody-dependent cellular cytotoxicity (ADCC) is a major mechanism of action. Therefore, assessment of ADCC is mandatory to understand the complex mechanisms leading to the anti-lymphoma effects of monoclonal antibodies (mAb). Due to methodical difficulties, little is yet known about the relevant cell subpopulations and effector mechanisms leading to tumor lysis in ADCC.
Methods: We used a novel flow cytometric assay that detects CD107a as a marker for NK-cell degranulation to characterize and quantify peripheral blood natural killer (NK) cells mediating ADCC in vitro and in vivo.
Results: We observed specific and dose-dependent NK-cell activation after administration of rituximab and alemtuzumab. The number of degranulating NK cells was closely related to the concentration of mAb and the effector:target ratio. We were able to quantify and characterize the peripheral blood NK cells mediating ADCC. The majority of degranulating NK cells had the phenotype: CD56(dim), CD69(+), NKG2D(+), NKp30(-), NKp46(-), and CD94(-). Furthermore, we found that the CD107a assay can also visualize ADCC under clinical conditions as we observed increased numbers of NK cells degranulating in response to CD20(+) lymphoma cell lines in patients with non-Hodgkin's lymphoma treated with rituximab.
Conclusions: We were able to quantify and characterize NK cells mediating ADCC with a new and feasible method. The CD107a assay may be useful for predicting treatment responses of individual patients and may help find the optimal dosage and timing for treatment with mAb.