Orai1 and STIM reconstitute store-operated calcium channel function

J Biol Chem. 2006 Jul 28;281(30):20661-20665. doi: 10.1074/jbc.C600126200. Epub 2006 Jun 9.

Abstract

The two membrane proteins, STIM1 and Orai1, have each been shown to be essential for the activation of store-operated channels (SOC). Yet, how these proteins functionally interact is not known. Here, we reveal that STIM1 and Orai1 expressed together reconstitute functional SOCs. Expressed alone, Orai1 strongly reduces store-operated Ca(2+) entry (SOCE) in human embryonic kidney 293 cells and the Ca(2+) release-activated Ca(2+) current (I(CRAC)) in rat basophilic leukemia cells. However, expressed along with the store-sensing STIM1 protein, Orai1 causes a massive increase in SOCE, enhancing the rate of Ca(2+)entry by up to 103-fold. This entry is entirely store-dependent since the same coexpression causes no measurable store-independent Ca(2+) entry. The entry is completely blocked by the SOC blocker, 2-aminoethoxydiphenylborate. Orai1 and STIM1 coexpression also caused a large gain in CRAC channel function in rat basophilic leukemia cells. The close STIM1 homologue, STIM2, inhibited SOCE when expressed alone but coexpressed with Orai1 caused substantial constitutive (store-independent) Ca(2+) entry. STIM proteins are known to mediate Ca(2+) store-sensing and endoplasmic reticulum-plasma membrane coupling with no intrinsic channel properties. Our results revealing a powerful gain in SOC function dependent on the presence of both Orai1 and STIM1 strongly suggest that Orai1 contributes the PM channel component responsible for Ca(2+) entry. The suppression of SOC function by Orai1 overexpression likely reflects a required stoichiometry between STIM1 and Orai1.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Boron Compounds / pharmacology
  • Calcium / metabolism
  • Calcium Channels
  • Cell Adhesion Molecules
  • Cell Line
  • Cell Line, Tumor
  • Cell Membrane / metabolism
  • Electrophysiology
  • Endoplasmic Reticulum / metabolism
  • Humans
  • Membrane Proteins / biosynthesis
  • Membrane Proteins / physiology*
  • Models, Biological
  • Neoplasm Proteins / biosynthesis
  • Neoplasm Proteins / physiology*
  • ORAI1 Protein
  • Rats
  • Stromal Interaction Molecule 1
  • Stromal Interaction Molecule 2

Substances

  • Boron Compounds
  • Calcium Channels
  • Cell Adhesion Molecules
  • Membrane Proteins
  • Neoplasm Proteins
  • ORAI1 Protein
  • ORAI1 protein, human
  • STIM1 protein, human
  • STIM2 protein, human
  • Stromal Interaction Molecule 1
  • Stromal Interaction Molecule 2
  • 2-aminoethoxydiphenyl borate
  • Calcium