Modeling of chromosome motility during mitosis

Curr Opin Cell Biol. 2006 Dec;18(6):639-47. doi: 10.1016/j.ceb.2006.10.006.

Abstract

Chromosome motility is a highly regulated and complex process that ultimately achieves proper segregation of the replicated genome. Recent modeling studies provide a computational framework for investigating how microtubule assembly dynamics, motor protein activity and mitotic spindle mechanical properties are integrated to drive chromosome motility. Among other things, these studies show that metaphase chromosome oscillations can be explained by a range of assumptions, and that non-oscillatory states can be achieved with modest changes to the model parameters. In addition, recent microscopy studies provide new insight into the nature of the coupling between force on the kinetochore and kinetochore-microtubule assembly/disassembly. Together, these studies facilitate advancement toward a unified model that quantitatively predicts chromosome motility.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Biological Clocks / genetics
  • Chromosome Segregation / genetics*
  • Chromosomes / genetics
  • Chromosomes / metabolism*
  • Chromosomes / ultrastructure
  • Cytokinesis / genetics*
  • Humans
  • Kinetochores / metabolism
  • Kinetochores / ultrastructure
  • Microtubules / genetics
  • Microtubules / metabolism
  • Microtubules / ultrastructure
  • Mitosis / genetics*
  • Models, Biological
  • Molecular Motor Proteins / genetics
  • Molecular Motor Proteins / metabolism
  • Spindle Apparatus / genetics
  • Spindle Apparatus / metabolism*
  • Spindle Apparatus / ultrastructure

Substances

  • Molecular Motor Proteins