Planning genetic studies on primary adult-onset dystonia: sample size estimates based on examination of first-degree relatives

J Neurol Sci. 2006 Dec 21;251(1-2):29-34. doi: 10.1016/j.jns.2006.08.009. Epub 2006 Oct 31.

Abstract

Primary adult-onset dystonia is thought to be partly genetic, but families large enough for a genome wide search are difficult to find. We examined the first-degree relatives of 76 primary adult-onset dystonia patients to assess the feasibility of model-free nonparametric methods that allow either screening of candidate loci (case-control design, transmission disequilibrium test [TDT], and sibling-TDT [S-TDT]) or identification of novel genes (affected sib-pair [ASP] method). Among the examined relatives, 1/34 parents, 13/149 siblings and 10/125 offspring were affected by adult-onset dystonia. The predicted sample sizes to detect a gene conferring an Odds ratio of 3.0 were 99 for case-control and TDT methodology, 148 for S-TDT, and 107 to 173 for an ASP study assuming three major loci. Based on our family structure, TDT, S-TDT, and ASP methods would required screening of about 220, 700, and 580 to 939 probands respectively. Analysing subpopulations with different types of dystonia, TDT required fewer probands with cervical/hand dystonia, S-TDT needed fewer probands with cranial dystonia. These sample size estimates suggest that the S-TDT may be feasible, whereas collection of cases for both TDT and ASP approaches would represent a major collaborative challenge.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Analysis of Variance
  • Dystonic Disorders / epidemiology*
  • Dystonic Disorders / genetics*
  • Family*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Odds Ratio
  • Physical Examination
  • Sample Size
  • Statistics, Nonparametric