The investigation of functional interactions between carbohydrates and neurotransmitter receptors is a challenging task. The presence of a wide variety of carbohydrates in the nervous system may preclude electrophysiological analysis using intact brain slice preparations or isolated neurons. The purification of transmitter receptors and their subsequent reconstitution into an artificial lipid bilayer can serve as a valuable tool to study carbohydrate and transmitter receptor interaction in a controlled environment. The "tip-dip" bilayer technique along with patch clamp electronics provides a unique means to explore carbohydrate interactions with a single transmitter receptor channel. This technique is also helpful in analyzing the interaction of carbohydrates with synaptic transmitter receptors using isolated synaptosomal preparations. Here, we illustrate the methods involved in reconstituting transmitter receptors in tip-dip bilayers and the subsequent study of carbohydrate interaction with the receptors.