Spin-liquid phase in a spin-1/2 quantum magnet on the kagome lattice

Phys Rev Lett. 2006 Nov 17;97(20):207204. doi: 10.1103/PhysRevLett.97.207204. Epub 2006 Nov 15.

Abstract

We study a model of hard-core bosons with short-range repulsive interactions at half filling on the kagome lattice. Using quantum Monte Carlo numerics, we find that this model shows a continuous superfluid-insulator quantum phase transition, with exponents z=1 and nu approximately 0.67(5). The insulator, I*, exhibits short-ranged density and bond correlations, topological order, and exponentially decaying spatial vison correlations, all of which point to a Z2 fractionalized phase. We estimate the vison gap in I* from the temperature dependence of the energy. Our results, together with the equivalence between hard-core bosons and S=1/2 spins, provide compelling evidence for a spin-liquid phase in an easy-axis spin-1/2 model with no special conservation laws.