Amiodarone (AMI) is a potent antiarrhythmic agent; however, its clinical use is limited due to numerous side effects. In order to investigate the structure--cytotoxicity relationship, AMI analogues were synthesized, and then, using rabbit alveolar macrophages, were tested for viability and for the ability to interfere with the degradation of surfactant protein A (SP-A) and with the accumulation of an acidotropic dye. Our data revealed that modification of the diethylamino-beta-ethoxy group of the AMI molecule may affect viability, the ability to degrade SP-A and vacuolation differently. In particular, PIPAM (2d), an analogue with a piperidyl moiety, acts toward the cells in a similar manner to AMI, but is less toxic. Thus, it would be possible to reduce the cytotoxicity of AMI by modifying its chemical structure.