Cracking patterns in the top ceramic layers of the modeled dental multilayers with polymer foundation are observed when they are immersed in water. This article developed a model to understand this cracking mechanism. When water diffuses into the polymer foundation of dental restorations, the foundation will expand; as a result, the stress will build up in the top ceramic layer because of the bending and stretching. A finite element model based on this mechanism is built to predict the stress build-up and the slow crack growth in the top ceramic layers during the water absorption. Our simulations show that the stress build-up by this mechanism is high enough to cause the cracking in the top ceramic layers and the cracking patterns predicted by our model are well consistent with those observed in experiments on glass/epoxy/polymer multilayers. The model is then used to discuss the life prediction of different dental ceramics.