Motivation: Statistical evaluation of the confidence of peptide and protein identifications made by tandem mass spectrometry is a critical component for appropriately interpreting the experimental data and conducting downstream analysis. Although many approaches have been developed to assign confidence measure from different perspectives, a unified statistical framework that integrates the uncertainty of peptides and proteins is still missing.
Results: We developed a hierarchical statistical model (HSM) that jointly models the uncertainty of the identified peptides and proteins and can be applied to any scoring system. With data sets of a standard mixture and the yeast proteome, we demonstrate that the HSM offers a reliable or at least conservative false discovery rate (FDR) estimate for peptide and protein identifications. The probability measure of HSM also offers a powerful discriminating score for peptide identification.
Availability: The algorithm is available upon request from the authors.