Assembling metals (Co II and Mn II) with pyridylcarboxylates in the presence of azide: synthesis, structural aspects and magnetic behavior of three coordination polymers

Dalton Trans. 2008 Feb 14:(6):767-75. doi: 10.1039/b715460g. Epub 2007 Dec 4.

Abstract

The reaction between Co(NO3)2.6H2O and substituted pyridylcarboxylic acid [nicotinic acid (Hnic) or trans-3-pyridylacrylic acid (Htpa)] in the presence of NaN3 under hydrothermal conditions yielded [Co(1.5)(nic)2 (Hnic)(N3)]n (1) and [Co(1.5)(tpa)2 (N3)(H2O)]n (2), respectively. Single crystal structure analyses reveal that both complexes are 3D complicated coordination polymers. The basic repeating units in both of the complexes are Co(3) trinuclear clusters containing syn-syn bridging carboxylate and end-on azido linker. A similar reaction using MnCl2.4H2O in presence of equimolar amounts of Htpa and NaN3 yielded a 2D corrugated sheet [Mn(tpa)2]n (3) containing no azide. Complex 3 can also be synthesized under hydrothermal conditions using Natpa in the absence of NaN3. Surprisingly, the same reaction at room temperature yielded a known mononuclear complex [Mn(tpa)2(H2O)4]. Variable temperature magnetic studies down to 2 K revealed the dominant antiferromagnetic nature of the first two complexes with a ferrimagnetic type of behavior despite the facts that they are homometallic and homospin systems. The susceptibility data in both cases were analyzed by a Co3 trinuclear model as well as considering inter-trimer interactions. Complex 3 is weakly antiferromagnetic in nature with an exchange parameter of J = -2 cm(-1) through the syn-anti bridging carboxylate pathway.