The carboxy-terminal domain of complexin I stimulates liposome fusion

Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2001-6. doi: 10.1073/pnas.0812813106. Epub 2009 Jan 29.

Abstract

Regulated exocytosis requires tight coupling of the membrane fusion machinery to a triggering signal and a fast response time. Complexins are part of this regulation and, together with synaptotagmins, control calcium-dependent exocytosis. Stimulatory and inhibitory functions have been reported for complexins. To test if complexins directly affect membrane fusion, we analyzed the 4 known mammalian complexin isoforms in a reconstituted fusion assay. In contrast to complexin III (CpxIII) and CpxIV, CpxI and CpxII stimulated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-pin assembly and membrane fusion. This stimulatory effect required a preincubation at low temperature and was specific for neuronal t-SNAREs. Stimulation of membrane fusion was lost when the carboxy-terminal domain of CpxI was deleted or serine 115, a putative phosphorylation site, was mutated. Transfer of the carboxy-terminal domain of CpxI to CpxIII resulted in a stimulatory CpxIII-I chimera. Thus, the carboxy-terminal domains of CpxI and CpxII promote the fusion of high-curvature liposomes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Vesicular Transport
  • Amino Acid Sequence
  • Liposomes* / chemistry
  • Membrane Fusion*
  • Nerve Tissue Proteins / pharmacology*
  • Protein Structure, Tertiary
  • SNARE Proteins / pharmacology
  • Vesicle-Associated Membrane Protein 2 / pharmacology

Substances

  • Adaptor Proteins, Vesicular Transport
  • Liposomes
  • Nerve Tissue Proteins
  • SNARE Proteins
  • Vesicle-Associated Membrane Protein 2
  • complexin I