We present a method called "Lock Release Lithography (LRL)" that utilizes a combination of channel topography, mask design, and pressure-induced channel deformation to form and release particles in a cycled fashion. This technique provides a means for the high-throughput production of particles with complex 3D morphologies and composite particles with spatially configurable chemistries. In this work, we demonstrate a diverse set of functional particles including those displaying heterogeneous swelling characteristics and containing functional entities such as nucleic acids, proteins and beads.