Background: Treatment of IgE-mediated food allergy with standard protein-based allergen immunotherapy has proved both unsuccessful and hazardous. Allergen gene vaccination represents a promising alternative, but difficulties in gene targeting and expression in antigen-presenting cells represent a major limitation for efficient gene vaccination.
Objective: We sought to construct a genetically engineered human epsilon-polylysine (EPL) fusion protein that binds allergen gene expression systems and targets the gene vaccine complex to antigen-presenting cells through the interaction of EPL and the high-affinity receptor for IgE for efficient allergen gene vaccination.
Methods: Genetic engineering was used to design and produce the EPL fusion gene, consisting of the human CHepsilon2-4 linked to 55 lysine residues, and the conventional approaches were used to characterize the biologic features of EPL.
Results: EPL was assembled as functional dimers and capable of binding DNA plasmids in both an EPL protein and plasmid DNA concentration-dependent manner. EPL targeted plasmid DNA to the high-affinity receptor for IgE on cell surfaces and increased the model gene uptake/expression. The EPL-DNA complexes were shown not to trigger mast cell degranulation.
Conclusion: EPL is able to function as a gene carrier system to target allergen gene to the high-affinity receptor for IgE-expressing cells through ligand receptor-mediated interactions.