[1-(13)C] pyruvate pre-polarized via DNP has been used in animal models to probe changes in metabolic enzyme activities in vivo. To more accurately assess the metabolic state and its change from disease progression or therapy in a specific region or tissue in vivo, it may be desirable to separate the downstream (13)C metabolite signals resulting from the metabolic activity within the tissue of interest and those brought into the tissue by perfusion. In this study, a spectral-spatial saturation pulse that selectively saturates the signal from the metabolic products [1-(13)C] lactate and [1-(13)C] alanine was designed and implemented as outer volume suppression for localized MRSI acquisition. Preliminary in vivo results showed that the suppression pulse did not prevent the pre-polarized pyruvate from being delivered throughout the animal while it saturated the metabolites within the targeted saturation region.