Radioiodinated D-(+)-N1-ethyl-2-iodolysergic acid diethylamide ([125I]-EIL) has been evaluated as a ligand for in vitro and in vivo studies of cerebral serotonin 5-HT2 receptors. [125I]-EIL exhibited high affinity (KD = 209 pM) for 5-HT2 receptors with a high degree of specific binding (80-95%) in membranes from rat prefrontal cortex. The regional distribution of [125I]-EIL binding in vivo to seven areas of mouse brain correlated significantly (Rs = 0.93) with known densities of 5-HT2 receptors. In vivo specificity, defined by tissue to cerebellum radioactivity ratios, reached a maximum for frontal cortex at 6 hr (21.2) and persisted through 16 hr (8.8). Ketanserin, a 5-HT2 receptor antagonist, fully inhibited binding in a dose dependent fashion in all brain regions except cerebellum. By contrast, blockers for dopamine D2, alpha- or beta-adrenergic receptors did not significantly inhibit radioligand binding in any region. [125I]-EIL selectively labels 5-HT2 receptors in vivo with the highest specificity of any serotonergic ligand reported to date, indicating that [123I]-EIL should prove applicable to single photon emission computed tomography studies in living brain.