Best vitelliform macular dystrophy (BVMD, also called Best's disease) is a dominantly inherited, juvenile-onset form of macular degeneration, which is characterized by abnormal accumulation of yellow pigment in the outer retina and a depressed electro-oculogram light peak (LP). Over 100 disease-causing mutations in human bestrophin-1 (hBest1) are closely linked to BVMD and several other retinopathies. However, the physiological role of hBest1 and the mechanisms of retinal pathology remain obscure partly because hBest1 has been described as a protein with multiple functions including a Ca2+-activated Cl- channel, a Ca2+ channel regulator, a volume-regulated Cl- channel, and a HCO3- channel. This review focuses on how dysfunction of hBest1 is related to the accumulation of yellow pigment and a decreased LP. The dysfunction of hBest1 as a HCO3- channel or a volume-regulated Cl- channel may be associated with defective regulation of the subretinal fluid or phagocytosis of photoreceptor outer segments by retinal pigment epithelium cells, which may lead to fluid and pigment accumulation.