Microfabricated high-moment micrometer-sized MRI contrast agents

Magn Reson Med. 2011 Mar;65(3):645-55. doi: 10.1002/mrm.22647. Epub 2010 Oct 6.

Abstract

While chemically synthesized superparamagnetic microparticles have enabled much new research based on MRI tracking of magnetically labeled cells, signal-to-noise levels still limit the potential range of applications. Here it is shown how, through top-down microfabrication, contrast agent relaxivity can be increased several-fold, which should extend the sensitivity of such cell-tracking studies. Microfabricated agents can benefit from both higher magnetic moments and higher uniformity than their chemically synthesized counterparts, implying increased label visibility and more quantitative image analyses. To assess the performance of microfabricated micrometer-sized contrast agent particles, analytic models and numerical simulations are developed and tested against new microfabricated agents described in this article, as well as against results of previous imaging studies of traditional chemically synthesized microparticle agents. Experimental data showing signal effects of 500-nm thick, 2-μm diameter, gold-coated iron and gold-coated nickel disks verify the simulations. Additionally, it is suggested that measures of location better than the pixel resolution can be obtained and that these are aided using well-defined contrast agent particles achievable through microfabrication techniques.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Contrast Media / chemical synthesis*
  • Image Enhancement / methods*
  • Magnetic Resonance Imaging / methods*
  • Microspheres
  • Reproducibility of Results
  • Sensitivity and Specificity

Substances

  • Contrast Media