The overwhelming majority of benign lesions of the adrenal cortex leading to Cushing syndrome are linked to one or another abnormality of the cAMP signaling pathway. A small number of both massive macronodular adrenocortical disease and cortisol-producing adenomas harbor somatic GNAS mutations. Micronodular adrenocortical hyperplasias are either pigmented (the classic form being that of primary pigmented nodular adrenocortical disease) or non-pigmented; micronodular adrenocortical hyperplasias can be seen in the context of other conditions or isolated; for example, primary pigmented nodular adrenocortical disease usually occurs in the context of Carney complex, but isolated primary pigmented nodular adrenocortical disease has also been described. Both Carney complex and isolated primary pigmented nodular adrenocortical disease are caused by germline PRKAR1A mutations; somatic mutations of this gene that regulates cAMP-dependent protein kinase are also found in cortisol-producing adenomas, and abnormalities of PKA are present in most cases of massive macronodular adrenocortical disease. Micronodular adrenocortical hyperplasias and some cortisol-producing adenomas are associated with phosphodiesterase 11A and 8B defects, coded, respectively, by the PDE11A and PDE8B genes. Mouse models of Prkar1a deficiency also show that increased cAMP signaling leads to tumors in adrenal cortex and other tissues. In this review, we summarize all recent data from ours and other laboratories, supporting the view that Wnt-signaling acts as an important mediator of tumorigenicity induced by abnormal PRKAR1A function and aberrant cAMP signaling.
Published by Elsevier Ireland Ltd.