Carboxyl terminus of apolipoprotein A-I (ApoA-I) is necessary for the transport of lipid-free ApoA-I but not prelipidated ApoA-I particles through aortic endothelial cells

J Biol Chem. 2011 Mar 11;286(10):7744-7754. doi: 10.1074/jbc.M110.193524. Epub 2011 Jan 5.

Abstract

High density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) must leave the circulation and pass the endothelium to exert their atheroprotective actions in the arterial wall. We previously demonstrated that the transendothelial transport of apoA-I involves ATP-binding cassette transporter (ABC) A1 and re-secretion of lipidated particles. Transendothelial transport of HDL is modulated by ABCG1 and the scavenger receptor BI (SR-BI). We hypothesize that apoA-I transport is started by the ABCA1-mediated generation of a lipidated particle which is then transported by ABCA1-independent pathways. To test this hypothesis we analyzed the endothelial binding and transport properties of initially lipid-free as well as prelipidated apoA-I mutants. Lipid-free apoA-I mutants with a defective carboxyl-terminal domain showed an 80% decreased specific binding and 90% decreased specific transport by aortic endothelial cells. After prior cell-free lipidation of the mutants, the resulting HDL-like particles were transported through endothelial cells by an ABCG1- and SR-BI-dependent process. ApoA-I mutants with deletions of either the amino terminus or both the amino and carboxyl termini showed dramatic increases in nonspecific binding but no specific binding or transport. Prior cell-free lipidation did not rescue these anomalies. Our findings of stringent structure-function relationships underline the specificity of transendothelial apoA-I transport and suggest that lipidation of initially lipid-free apoA-I is necessary but not sufficient for specific transendothelial transport. Our data also support the model of a two-step process for the transendothelial transport of apoA-I in which apoA-I is initially lipidated by ABCA1 and then further processed by ABCA1-independent mechanisms.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily G, Member 1
  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism
  • Animals
  • Aorta / cytology
  • Aorta / metabolism*
  • Apolipoprotein A-I / genetics
  • Apolipoprotein A-I / metabolism*
  • Cattle
  • Cell Line
  • Endothelial Cells / cytology
  • Endothelial Cells / metabolism*
  • Humans
  • Models, Biological*
  • Mutation
  • Protein Processing, Post-Translational / physiology*
  • Protein Structure, Tertiary
  • Protein Transport / physiology
  • Scavenger Receptors, Class B / genetics
  • Scavenger Receptors, Class B / metabolism
  • Structure-Activity Relationship

Substances

  • ABCG1 protein, human
  • ATP Binding Cassette Transporter, Subfamily G, Member 1
  • ATP-Binding Cassette Transporters
  • Apolipoprotein A-I
  • SCARB1 protein, human
  • Scavenger Receptors, Class B