A detailed understanding of the response of single microbubbles subjected to ultrasound is fundamental to a full understanding of the contrast-enhancing abilities of microbubbles in medical ultrasound imaging, in targeted molecular imaging with ultrasound, and in ultrasound-mediated drug delivery with microbubbles. Here, single microbubbles are isolated and their ultrasound-induced radial dynamics recorded with an ultra-high-speed camera at up to 25 million frames per second. The sound emission is recorded simultaneously with a calibrated single element transducer. It is shown that the sound emission can be predicted directly from the optically recorded radial dynamics, and vice versa, that the nanometer-scale radial dynamics can be predicted from the acoustic response recorded in the far field.