Solution structure and small angle scattering analysis of TraI (381-569)

Proteins. 2012 Aug;80(9):2250-61. doi: 10.1002/prot.24114. Epub 2012 Jun 18.

Abstract

TraI, the F plasmid-encoded nickase, is a 1756 amino acid protein essential for conjugative transfer of plasmid DNA from one bacterium to another. Although crystal structures of N- and C-terminal domains of F TraI have been determined, central domains of the protein are structurally unexplored. The central region (between residues 306 and 1520) is known to both bind single-stranded DNA (ssDNA) and unwind DNA through a highly processive helicase activity. Here, we show that the ssDNA binding site is located between residues 381 and 858, and we also present the high-resolution solution structure of the N-terminus of this region (residues 381-569). This fragment folds into a four-strand parallel β sheet surrounded by α helices, and it resembles the structure of the N-terminus of helicases such as RecD and RecQ despite little sequence similarity. The structure supports the model that F TraI resulted from duplication of a RecD-like domain and subsequent specialization of domains into the more N-terminal ssDNA binding domain and the more C-terminal domain containing helicase motifs. In addition, we provide evidence that the nickase and ssDNA binding domains of TraI are held close together by an 80-residue linker sequence that connects the two domains. These results suggest a possible physical explanation for the apparent negative cooperativity between the nickase and ssDNA binding domain.

Publication types

  • Research Support, American Recovery and Reinvestment Act
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Binding Sites
  • DNA Helicases / chemistry*
  • DNA Helicases / metabolism
  • Escherichia coli Proteins / chemistry*
  • Escherichia coli Proteins / metabolism
  • Molecular Dynamics Simulation
  • Nuclear Magnetic Resonance, Biomolecular
  • Scattering, Small Angle

Substances

  • Escherichia coli Proteins
  • TraI protein, E coli
  • DNA Helicases