Initial neurogenesis in Drosophila

Wiley Interdiscip Rev Dev Biol. 2013 Sep-Oct;2(5):701-21. doi: 10.1002/wdev.111. Epub 2013 Feb 11.

Abstract

Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neurectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Drosophila / cytology
  • Drosophila / embryology*
  • Drosophila / genetics
  • Drosophila / metabolism
  • Genes, Developmental
  • Genes, Insect
  • Morphogenesis
  • Neural Stem Cells / cytology
  • Neural Stem Cells / metabolism
  • Neurogenesis*