Fetal Magnetic Resonance Imaging (MRI) on clinical scanners has increasingly been realized as a powerful imaging tool and applied for studying the brain abnormalities and the potential of neurodevelopmental disabilities in vivo. The primarily used multi-echo fast imaging sequences reduce the motion artifacts with a tradeoff of image Signal-to-Noise Ratio (SNR) and resolution. In Radio Frequency (RF) hardware for MR signal excitation and reception, there are lack of dedicated RF coils for fetal imaging providing optimized performance in acquisition and safety. There is an urgent demand for novel hardware and fast imaging technology developments to overcome motion artifacts and improve sensitivity and safety. Recent studies have demonstrated that dedicated fetal RF transceiver arrays can improve the SNR, image coverage, and safety. In addition, emerging fast imaging technologies such as parallel imaging and compressed sensing would be advantageous in improving imaging speed and thus reducing motion artifacts in fetal imaging.