The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives

Biochim Biophys Acta. 2014 Aug;1842(8):1219-31. doi: 10.1016/j.bbadis.2013.09.010. Epub 2013 Sep 23.

Abstract

Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains that gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts that biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it.

Keywords: Aging; Alzheimer's disease; Amyloid; Brain; Dementia; Mitochondria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / drug therapy
  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / pathology
  • Animals
  • Biomarkers / metabolism
  • Humans
  • Mitochondria / metabolism*
  • Models, Biological*
  • Signal Transduction*

Substances

  • Biomarkers