Nerve cells in hydra: monoclonal antibodies identify two lineages with distinct mechanisms for their incorporation into head tissue

Dev Biol. 1986 Mar;114(1):225-37. doi: 10.1016/0012-1606(86)90398-2.

Abstract

The relationship between populations of nerve cells defined by two monoclonal antibodies was investigated in Hydra oligactis. A population of sensory nerve cells localized in the head (hypostome and tentacles) is identified by the binding of antibody JD1. A second antibody, RC9, binds ganglion cells throughout the animal. When the nerve cell precursors, the interstitial cells, are depleted by treatment with hydroxyurea or nitrogen mustard, the JD1+ nerve cells are lost as epithelial tissue is sloughed at the extremities. In contrast, RC9+ nerve cells remain present in all regions of the animal following treatment with either drug. When such hydra are decapitated to initiate head regeneration, the new head tissue formed is again free of JD1+ sensory cells but does contain RC9+ ganglion cells. Our studies indicate that (1) nerve cells are passively displaced with the epithelial tissue in hydra, (2) JD1+ sensory cells do not arise by the conversion of body column nerve cells that are displaced into the head, whereas RC9+ head nerve cells can originate in the body column, (3) formation of new JD1+ sensory cells requires interstitial cell differentiation. We conclude from these results that the two populations defined by these antibodies are incorporated into the h ad via different developmental pathways and, therefore, constitute distinct nerve cell lineages.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antibodies, Monoclonal
  • Cell Differentiation
  • Cell Movement
  • Epithelial Cells
  • Hydra / cytology*
  • Hydra / physiology
  • Nervous System / cytology
  • Nervous System Physiological Phenomena
  • Regeneration
  • Staining and Labeling

Substances

  • Antibodies, Monoclonal