Aquaporin 1 (AQP1) is a plasma membrane water-transporting protein expressed strongly in tumor microvascular endothelia. We previously reported impaired angiogenesis in implanted tumors in AQP1-deficient mice and reduced migration of AQP1-deficient endothelial cells in vitro. Here, we investigated the consequences of AQP1 deficiency in mice that spontaneously develop well-differentiated, luminal-type breast adenomas with lung metastases [mouse mammary tumor virus-driven polyoma virus middle T oncogene (MMTV-PyVT)]. AQP1(+/+) MMTV-PyVT mice developed large breast tumors with total tumor mass 3.5 ± 0.5 g and volume 265 ± 36 mm(3) (SE, 11 mice) at age 98 d. Tumor mass (1.6±0.2 g) and volume (131±15 mm(3), 12 mice) were greatly reduced in AQP1(-/-) MMTV-PyVT mice (P<0.005). CD31 immunofluorescence showed abnormal microvascular anatomy in tumors of AQP1(-/-) MMTV-PyVT mice, with reduced vessel density. HIF-1α expression was increased in tumors in AQP1(-/-) MMTV-PyVT mice. The number of lung metastases (5±1/mouse) was much lower than in AQP1(+/+) MMTV-PyVT mice (31±8/mouse, P<0.005). These results implicate AQP1 as an important determinant of tumor angiogenesis and, hence, as a potential drug target for adjuvant therapy of solid tumors.
Keywords: AQP1; endothelia; water channel.