Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model

Phys Rev Lett. 2016 Aug 26;117(9):096405. doi: 10.1103/PhysRevLett.117.096405. Epub 2016 Aug 25.

Abstract

We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionic symmetry-protected topological phase. This state-protected by time-reversal and reflection symmetries-cannot be connected adiabatically to a free-fermion topological phase.