The metallic 1T-MoS2 has attracted considerable attention as an effective catalyst for hydrogen evolution reactions (HERs). However, the fundamental mechanism about the catalytic activity of 1T-MoS2 and the associated phase evolution remain elusive and controversial. Herein, we prepared the most stable 1T-MoS2 by hydrothermal exfoliation of MoS2 nanosheets vertically rooted into rigid one-dimensional TiO2 nanofibers. The 1T-MoS2 can keep highly stable over one year, presenting an ideal model system for investigating the HER catalytic activities as a function of the phase evolution. Both experimental studies and theoretical calculations suggest that 1T phase can be irreversibly transformed into a more active 1T' phase as true active sites in photocatalytic HERs, resulting in a "catalytic site self-optimization". Hydrogen atom adsorption is the major driving force for this phase transition.
Keywords: ab initio calculations; molybdenum disulfide; monolayers; phase transitions; photocatalysis.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.