Framework for gradual progression of cell ontogeny in the Arabidopsis root meristem

Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8922-E8929. doi: 10.1073/pnas.1707400114. Epub 2017 Oct 2.

Abstract

In plants, apical meristems allow continuous growth along the body axis. Within the root apical meristem, a group of slowly dividing quiescent center cells is thought to limit stem cell activity to directly neighboring cells, thus endowing them with unique properties, distinct from displaced daughters. This binary identity of the stem cells stands in apparent contradiction to the more gradual changes in cell division potential and differentiation that occur as cells move further away from the quiescent center. To address this paradox and to infer molecular organization of the root meristem, we used a whole-genome approach to determine dominant transcriptional patterns along root ontogeny zones. We found that the prevalent patterns are expressed in two opposing gradients. One is characterized by genes associated with development, the other enriched in differentiation genes. We confirmed these transcript gradients, and demonstrate that these translate to gradients in protein accumulation and gradual changes in cellular properties. We also show that gradients are genetically controlled through multiple pathways. Based on these findings, we propose that cells in the Arabidopsis root meristem gradually transition from stem cell activity toward differentiation.

Keywords: Arabidopsis; plant development; root meristem; transcriptional regulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / cytology*
  • Arabidopsis / genetics
  • Arabidopsis / growth & development
  • Arabidopsis Proteins / genetics*
  • Flow Cytometry / methods
  • Gene Expression Regulation, Plant
  • Green Fluorescent Proteins / genetics
  • Meristem / cytology*
  • Meristem / genetics
  • Plant Cells
  • Plant Roots / cytology*
  • Plant Roots / genetics
  • Plant Roots / growth & development
  • Plants, Genetically Modified

Substances

  • Arabidopsis Proteins
  • Green Fluorescent Proteins