Mixed-Metal-Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction

ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38621-38628. doi: 10.1021/acsami.7b13359. Epub 2017 Oct 24.

Abstract

Developing an efficient, stable yet cost-effective electrocatalyst is the key link along the path to hydrogen fuels produced by water splitting. The current bottleneck in the water electrolysis technology is the sluggish oxygen-evolving reaction (OER) which is also central to the rechargeable metal-air batteries. Herein, we report a promising mixed-metal-organic framework (MMOF) self-template strategy to synthesize CoFe hybrid oxyphosphides with highly porous morphology. Aided by the porous hybrid bulk structure beneficial to fast-ion diffusion to abundant highly active sites, the as-synthesized Co3FePxO exhibited excellent electrocatalytic activity toward OER, with an overpotential of 291 mV at 10 mA cm-2 and a low Tafel slope of 85 mV dec-1. With the underpinnings of MMOF maintaining the structural rigidity and stability, the material also showed long life for OER without discernible activity decay.

Keywords: mixed-metal−organic framework; oxygen evolution; oxyphosphide; porous structure; self-template.