Previous modeling studies have demonstrated that lateral inhibition contributes to enhanced precision in sensory networks. That is, inhibitory connections reduce the spread of activity and repress neighboring cells, increasing the reliability of a sensory response. However, much less is understood about how connections that spread activity might contribute to the processing of sensory stimuli in the context of a sensory discrimination task. In this work, we examine the role of excitatory connections and gap junctions in network dynamics and some contributions to sensory discrimination.