Purpose/Aim of the study: the retinal relaxing factor (RRF) is an unidentified paracrine factor, which is continuously released from retinal tissue and causes smooth muscle cell relaxation. This study tried to identify the cellular source of the RRF. Furthermore, the possible RRF release by voltage-dependent sodium channel activation and the calcium-dependency of the RRF release were investigated.
Materials and methods: mouse femoral arteries were mounted in myograph baths for in vitro isometric tension measurements. The vasorelaxing effect of chicken retinas, which contain no vascular cells, and of solutions incubated with MIO-M1 or primary Müller cell cultures were evaluated. The RRF release of other retinal cells was investigated by using cell type inhibitors. Concentration-response curves of veratridine, a voltage-dependent sodium channel activator, were constructed in the presence or absence of mouse retinal tissue to evaluate the RRF release. The calcium-dependency of the RRF release was investigated by evaluating the vasorelaxing effect of RRF-containing solutions made out of chicken retinas in the absence or presence of calcium.
Results: Chicken retinas induced vasorelaxation, whereas solutions incubated with Müller cell cultures did not. Moreover, the gliotoxin DL-α-aminoadipic acid, the microglia inhibitor minocycline, and the tetrodotoxin-resistant voltage-dependent sodium channel 1.8 inhibitor A-803467 could not reduce the RRF-induced relaxation. Concentration-response curves of veratridine were not enlarged in the presence of retinal tissue, and RRF-containing solutions made in the absence of calcium induced a substantial, but reduced vasorelaxation.
Conclusions: the RRF is not released from vascular cells and probably neither from glial cells. The retinal cell type that does release the RRF remains unclear. Veratridine does not stimulate the RRF release in mice, and the RRF release in chickens is calcium-dependent as well as calcium-independent.
Keywords: Müller cells; Retinal relaxing factor; glial cells; vascular cells; veratridine.