Actin's N-terminal acetyltransferase uncovered

Cytoskeleton (Hoboken). 2018 Jul;75(7):318-322. doi: 10.1002/cm.21455. Epub 2018 Aug 26.

Abstract

Humans express six highly conserved actin isoforms, which differ the most at their N-termini. Actin's N-terminus undergoes co- and post-translational processing unique among eukaryotic proteins. During translation, the initiator methionine of the two cytoplasmic isoforms is N-terminally acetylated (Nt-acetylated) and that of the four muscle isoforms is removed and the exposed cysteine is Nt-acetylated. Then, an unidentified acetylaminopeptidase post-translationally removes the Ac-Met (or Ac-Cys), and all six isoforms are re-acetylated at the N-terminus. Despite the vital importance of actin for cellular processes ranging from cell motility to organelle trafficking and cell division, the mechanism and functional consequences of Nt-acetylation remained unresolved. Two recent studies significantly advance our understanding of actin Nt-acetylation. Drazic et al. (2018, Proc Natl Acad Sci U S A, 115, 4399-4404) identify actin's dedicated N-terminal acetyltransferase (NAA80/NatH), and demonstrate that Nt-acetylation critically impacts actin assembly in vitro and in cells. NAA80 knockout cells display increased filopodia and lamellipodia formation and accelerated cell motility. In vitro, the absence of Nt-acetylation leads to a decrease in the rates of filament depolymerization and elongation, including formin-induced elongation. Goris et al. (2018, Proc Natl Acad Sci U S A, 115, 4405-4410] describe the structure of Drosophila NAA80 in complex with a peptide-CoA bi-substrate analog mimicking the N-terminus of β-actin. The structure reveals the source of NAA80's specificity for actin's negatively-charged N-terminus. Nt-acetylation neutralizes a positive charge, thus enhancing the overall negative charge of actin's unique N-terminus. Actin's N-terminus is exposed in the filament and influences the interactions of many actin-binding proteins. These advances open the way to understanding the many likely consequences and functional roles of actin Nt-acetylation.

Keywords: N-terminal acetylation; actin assembly; cell motility.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • Actins / metabolism*
  • Amino Acid Sequence
  • Animals
  • Cell Movement
  • Drosophila
  • Humans
  • Isoenzymes
  • Models, Molecular
  • N-Terminal Acetyltransferases / chemistry
  • N-Terminal Acetyltransferases / genetics
  • N-Terminal Acetyltransferases / metabolism*
  • Protein Processing, Post-Translational

Substances

  • Actins
  • Isoenzymes
  • N-Terminal Acetyltransferases