The serotonin transporter (SERT) is an oligomeric glycoprotein with two sialic acid residues on each of two complex oligosaccharide molecules. Studies using in vivo and in vitro model systems demonstrated that diverse post-translational modifications, including phosphorylation, glycosylation, serotonylation, and disulfide bond formation, all favorably influences SERT conformation and allows the transporter to function most efficiently. This review discusses the post-translational modifications and their importance on the structure, maturation, and serotonin (5-HT) uptake ability of SERT. Finally, we discuss how these modifications are altered in diabetes mellitus and subsequently impairs the 5-HT uptake ability of SERT.
Keywords: Disulfide bond formation; Glycosylation; Insulin signaling; Oligomerization; SERT.
Copyright © 2018 Elsevier Ltd. All rights reserved.