The generation of hematopoietic stem cells (HSCs) from embryonic endothelial precursors and pre-HSCs is precisely regulated by signaling pathways and transcription factors. Nevertheless, regulatory roles of non-coding RNAs remain unknown. Taking advantage of our ability to capture rare pre-HSCs and HSCs in vivo, we generated a single-cell landscape of long non-coding RNAs (lncRNAs) during HSC development. Combining bioinformatics and functional screening, we identified 6 lncRNAs influencing hematopoiesis in vitro. We further revealed that H19 lncRNA is pivotal for in vivo HSC emergence in aorta-gonads-mesonephros region. Early H19 lncRNA deficiency blocked endothelial-to-hematopoietic transition, which was independent of the H19-derived miR, miR-675. Moreover, H19-deficient pre-HSCs displayed promoter hypermethylation and concomitant downregulation of several master hematopoietic transcription factors, including Runx1 and Spi1. H19 deficiency increased the activity of S-adenosylhomocysteine hydrolase, a regulator of DNA methylation, which partially contributed to the observed hematopoietic defect. Our findings provide a resource for further analysis of lncRNAs in embryonic HSC development.
Keywords: DNA methylation; H19; Runx1; S-adenosylhomocysteine hydrolase; aorta-gonads-mesonephros region; endothelial-to-hematopoietic transition; hematopoietic stem cells; long non-coding RNAs; pre-hematopoietic stem cells; single-cell RNA sequencing.
Copyright © 2018 Elsevier Inc. All rights reserved.