Multimodal gradients across mouse cortex

Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4689-4695. doi: 10.1073/pnas.1814144116. Epub 2019 Feb 19.

Abstract

The primate cerebral cortex displays a hierarchy that extends from primary sensorimotor to association areas, supporting increasingly integrated function underpinned by a gradient of heterogeneity in the brain's microcircuits. The extent to which these hierarchical gradients are unique to primate or may reflect a conserved mammalian principle of brain organization remains unknown. Here we report the topographic similarity of large-scale gradients in cytoarchitecture, gene expression, interneuron cell densities, and long-range axonal connectivity, which vary from primary sensory to prefrontal areas of mouse cortex, highlighting an underappreciated spatial dimension of mouse cortical specialization. Using the T1-weighted:T2-weighted (T1w:T2w) magnetic resonance imaging map as a common spatial reference for comparison across species, we report interspecies agreement in a range of large-scale cortical gradients, including a significant correspondence between gene transcriptional maps in mouse cortex with their human orthologs in human cortex, as well as notable interspecies differences. Our results support the view of systematic structural variation across cortical areas as a core organizational principle that may underlie hierarchical specialization in mammalian brains.

Keywords: cortical gradients; cortical hierarchy; gene expression; interspecies comparison.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain Mapping
  • Cerebral Cortex / diagnostic imaging*
  • Cerebral Cortex / metabolism
  • Gene Expression
  • Humans
  • Magnetic Resonance Imaging
  • Mice
  • Proteins / genetics*
  • Proteins / metabolism
  • Transcription, Genetic

Substances

  • Proteins