Purpose of review: To discuss recent findings on the importance of the small intestine in modulating metabolism and inflammation in atherosclerosis and cancer.
Recent findings: Integrin β7 natural gut intraepithelial T cells modulated metabolism and accelerated atherosclerosis in mice. Reducing the generation of lysophospholipids in the small intestine mimicked bariatric surgery and improved diabetes. Enterocyte-specific knockdown of stearoyl-CoA desaturase-1 significantly improved dyslipidemia in LDL receptor null (Ldlr) mice fed a Western diet. Adding a concentrate of tomatoes transgenic for the apolipoprotein A-I mimetic peptide 6F to the chow of wild-type mice altered lipid metabolism in the small intestine, preserved Notch signaling and reduced tumor burden in mouse models. The phospholipid-remodeling enzyme Lpcat3 regulated intestinal stem cells and progenitor cells by stimulating cholesterol biosynthesis; increasing cholesterol in the diet or through genetic manipulation promoted tumorigenesis in Apc mice.
Summary: The small intestine is important for regulating metabolism and inflammation in animal models of both atherosclerosis and cancer.