Inactivating Mutations in Exonuclease and Polymerase Domains in DNA Polymerase Delta Alter Sensitivities to Inhibitors of dNTP Synthesis

DNA Cell Biol. 2020 Jan;39(1):50-56. doi: 10.1089/dna.2019.5125. Epub 2019 Nov 21.

Abstract

POLD1 encodes the catalytic subunit of DNA polymerase delta (Polδ), the major lagging strand polymerase, which also participates in DNA repair. Mutations affecting the exonuclease domain increase the risk of various cancers, while mutations that change the polymerase active site cause a progeroid syndrome called mandibular hypoplasia, deafness, progeroid features, and lipodystrophy (MDPL) syndrome. We generated a set of catalytic subunit of human telomerase (hTERT)-immortalized human fibroblasts expressing wild-type or mutant POLD1 using the retroviral LXSN vector system. In the resulting cell lines, expression of endogenous POLD1 was suppressed in favor of the recombinant POLD1. The siRNA screening of DNA damage-related genes revealed that fibroblasts expressing D316H and S605del POLD1 were more sensitive to knockdowns of ribonuclease reductase (RNR) components, RRM1 and RRM2 in the presence of hydroxyurea (HU), an RNR inhibitor. On the contrary, SAMHD1 siRNA, which increases the concentration of dNTPs, increased growth of wild type, D316H, and S605del POLD1 fibroblasts. Hypersensitivity to dNTP synthesis inhibition in POLD1 mutant lines was confirmed using gemcitabine. Our finding is consistent with the notion that reduced dNTP concentration negatively affects the cell growth of hTERT fibroblasts expressing exonuclease and polymerase mutant POLD1.

Keywords: fibroblasts; human; mutation; polymerase delta; siRNA screening.

MeSH terms

  • Base Sequence
  • Binding Sites / genetics
  • Cell Line
  • DNA Polymerase III / antagonists & inhibitors
  • DNA Polymerase III / genetics*
  • DNA Polymerase III / metabolism
  • Deafness / genetics
  • Deafness / metabolism
  • Deoxyribonucleotides / metabolism*
  • Exonucleases / genetics
  • Exonucleases / metabolism
  • Fibroblasts / cytology
  • Fibroblasts / drug effects
  • Fibroblasts / metabolism*
  • Humans
  • Hydroxyurea / pharmacology
  • Lipodystrophy / genetics
  • Lipodystrophy / metabolism
  • Lipodystrophy / pathology
  • Mutation*
  • RNA Interference
  • SAM Domain and HD Domain-Containing Protein 1 / genetics
  • SAM Domain and HD Domain-Containing Protein 1 / metabolism
  • Syndrome

Substances

  • Deoxyribonucleotides
  • POLD1 protein, human
  • DNA Polymerase III
  • Exonucleases
  • SAM Domain and HD Domain-Containing Protein 1
  • Hydroxyurea